Análisis de respuestas enriquecidas en Google
DOI:
https://doi.org/10.54886/scire.v29i1.4908Palavras-chave:
Respuestas enriquecidas, Fragmentos enriquecidos, GAB, SEO, Motores de búsqueda, Google, Optimización de respuestasResumo
En recuperación de información web, los motores de búsqueda como Google incluyen funcionalidades que devuelven respuestas directas a las consultas de los usuarios. Estas respuestas tratan de resolver una necesidad informativa y se conocen como rich answers. Para determinar cómo se presentan estos resultados y cómo afecta la optimización de los motores de búsqueda, se ha realizado un análisis de las respuestas directas destacadas que presenta Google. En este trabajo se han examinado preguntas de tipo informacional expresadas en lenguaje natural con los términos "what is". Se ha analizado el listado de los resultados para identificar las características de las respuestas directas. Además, se han explorado las estrategias SEO que puedan determinar la relevancia del fragmento respecto de la consulta. Con este trabajo se constata que la respuesta no se extrae necesariamente de forma literal de una página web y se comprueba que la solución a las preguntas puede proceder de varios recursos. Los fragmentos de respuesta directa y otros rich answers pueden llegar a ocupar cerca de la mitad de la página principal de resultados, cobrando un mayor protagonismo y desplazando al resto de los resultados orgánicos. Las respuestas directas proporcionan un cambio en los hábitos de búsqueda y un nuevo modo de navegar en la red basado en un sistema hiperenlazado de pregunta respuesta.Downloads
Referências
Bernstein, Michael S.; Teevan, Jaime; Dumais, Susan; Liebling, Daniel; Horvitz, Eric (2012). Direct answers for search queries in the long tail. // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Austin Texas USA: ACM 237-246. ISBN 9781450310154. https://doi.org/10.1145/2207676.2207710
Bilal, Dania; Huang, Li-Min (2019). Readability and word complexity of SERPs snippets and web pages on children’s search queries: Google vs Bing. // Aslib Journal of Information Management. 71:2, 241–259. https://doi.org/10.1108/AJIM-05-2018-0124
Bink, Markus; Zimmerman, Steven; Elsweiler, David (2022). Featured Snippets and their Influence on Users’ Credibility Judgements. // ACM SIGIR Conference on Human Information Interaction and Retrieval, 113–122. https://doi.org/10.1145/3498366.3505766
Broder, Andrei (2002). A taxonomy of web search. // ACM SIGIR Forum, 36:2, 3–10. https://doi.org/10.1145/792550.792552
Chen, Wei-Fan; Hagen, Matthias; Stein, Benno; Potthast, Martin (2018) A User Study on Snippet Generation: Text Reuse vs. Paraphrases. // The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 1033–1036. https://doi.org/10.1145/3209978.3210149
Duong, Véronique (2019). State of the Art of SEO. // SEO Management: Methods and Techniques to Achieve Success (1.a ed., pp. 1-9). Wiley Data and Cybersecurity. https://doi.org/10.1002/9781119681427
eMarketer, & Insider Intelligence. (April 13, 2022). Number of voice assistant users in the United States from 2017 to 2022 (in millions) [Gráfico]. // Statista. https://www.statista.com/statistics/1029573/us-voice-assistant-users/
Enge, Eric; Spencer, Stephan; Stricchiola, Jessie C. (2015). The Art of SEO: mastering search engine optimization. 3ª ed.. O’Reilly Media, Inc, USA.
Enge, Eric (2017). Featured Snippets: New Insights, New Opportunities. Stone Temple Company Blog. https://www.stonetemple.com/ featured-snippets-new-Insights-new-opportunities/
Epstein, Robert; Lee, Vivian; Mohr, Roger; Zankich, Vanessa R. (2022). The Answer Bot Effect (ABE): A powerful new form of influence made possible by intelligent personal assistants and search engines. // PLOS ONE. 17:6, e0268081. https://doi.org/10.1371/journal.pone.0268081
Google (2023). Google Trend. https://trends.google.es/
Harto, Agus Budi (2019). Implementing Website Design Based on Search Engine Optimization (SEO) Checklist to Increase Web Popularity. Journal of Applied Information, Communication and Technology, 6:2, 87–97. https://doi.org/10.33555/ejaict.v6i2.67
Ishkin Rand. (2019 Agosto 13). Less than half of Google searches now result in a click. // SparkToro. https://sparktoro.com/blog/less-than-half-of-google-searches-now-result-in-a-click/
Khashabi, Daniel; Ng, Amos; Khot, Tushar; Sabharwal, Ashish; Hajishirzi, Hannaneh; Callison-Burch, Chris (2021). GooAQ: Open Question Answering with Diverse Answer Types. // Findings of the Association for Computational Linguistics: EMNLP 2021, 421–433. https://doi.org/10.18653/v1/2021.findings-emnlp.38
Killoran, John B. (2013). How to Use Search Engine Optimization Techniques to Increase Website Visibility. // IEEE Transactions on Professional Communication, 56:1, 50–66. https://doi.org/10.1109/TPC.2012.2237255
Lewandowski, Dirk; Drechsler, Jessica; Mach, Sonja (2012). Deriving query intents from web search engine queries. // Journal of the American Society for Information Science and Technology, 63:9, 1773–1788. https://doi.org/10.1002/asi.22706
Lurie, Emma; Mustafaraj, Eni (2018). Investigating the Effects of Google’s Search Engine Result Page in Evaluating the Credibility of Online News Sources. // Proceedings of the 10th ACM Conference on Web Science, 107–116. https://doi.org/10.1145/3201064.3201095
Mander, Jason; Buckle, Chase (2018). Voice Search. Insight Report 2018. // Global Web Index.https://www.insidemarketing.eu/cdn/wp-content/uploads/2019/01/Voice-Search-global-web-indexreport.pdf
Miklošík, Andrej; Hlavatý, Ivan; Daňo, Ferdinand; Červenka, Peter (2016). Google Answer Box Keyword-related analysis. A case study. // European Journal of Science and Theology. 12:5,185-194. http://www.ejst.tuiasi.ro/Files/60/19_Miklosik%20et%20al.pdf
Miklosik, Andrej. (2019). Search Engine Marketing Strategies: Google Answer Box-Related Search Visibility Factors. // Handbook of Research on Entrepreneurship and Marketing for Global Reach in the Digital Economy, edited by Luísa Cagica Carvalho y Pedro Isaías, Eds. Hershey, PA, USA: IGI Global, 2019. 463-485. https://doi.org/10.4018/978-1-5225-6307-5.ch020
Mishra, Amit; Jain, Sanjay Kumar (2016). A survey on question answering systems with classification. // Journal of King Saud University - Computer and Information Sciences. 28:3, 345-361.
Moldovan, Dan; Harabagiu, Sanda; Pasca, Marius; Mihalcea, Rada; Girju, Roxana; Goodrum, Richard; Rus, Vasile (2000). The structure and performance of an open-domain question answering system. // Proceedings of the 38th Annual Meeting on Association for Computational Linguistics - ACL ’00, 563–570. https://doi.org/10.3115/1075218.1075289
Morato, Jorge; Sánchez-Cuadrado, Sonia; Moreno, Valentin; Moreiro, José. A. (2013). Evolución de los factores de posicionamiento web y adaptación de las herramientas de optimización. // Revista española de Documentación Científica. 36:3, e018. https://doi.org/10.3989/redc.2013.3.956
Nayak, Pandu (2019). Understanding Searches Better Than Ever Before. // Google. https://blog.google/ products/search/search-language-understanding-bert
Nayak, Pandu (2022). How AI powers great research results. // Google. https://blog.google/products/search/how-ai-powers-great-search-results/
Sánchez-Cuadrado, Sonia; Lloréns, Juan; Morato, Jorge; Hurtado, José. A. (2003). Extracción Automática de Relaciones Semánticas. 2da. Conferencia Iberoamericana // Sistemas, Cibernética e Informática. CISCI 2003. Orlando (Florida) 31 - 2 de agosto de 2003. 265-268.
Singhal, Amit (2012). Introducing the knowledge graph: things, not strings. https://googleblog.blogspot.co.at/2012/05/introducing-knowledge-graph-things-not.html.
StatCounter. (abril 26, 2023). Worldwide desktop market share of leading search engines from January 2015 to March 2023 [Gráfica]. // Statista. https://www.statista.com/statistics/216573/worldwide-market-share-of-search-engines/
StatCounter. (mayo 10, 2022). Cuota de mercado de los principales motores de búsqueda online usados // España // 2021 [Gráfica]. // Statista. https://es.statista.com/estadisticas/670092/cuota-de-mercado-de-los-motores-de-busqueda-por-buscador-espana/
Strzelecki, Artur; Rutecka, Paulina (2019). The Snippets Taxonomy in Web Search Engines. // M. Pańkowska & K. Sandkuhl (Eds.). Perspectives in Business Informatics Research. 365, 177-188. Springer International Publishing. https://doi.org/10.1007/978-3-030-31143-8_13
Strzelecki, Artur; Rutecka, Paulina (2020a). Direct Answers in Google Search Results. // IEEE Access. 8, 103642-103654. https://doi.org/10.1109/ACCESS.2020.2999160
Strzelecki, Artur; Rutecka, Paulina (2020b). Featured Snippets Results in Google Web Search: An Exploratory Study. In Á. Rocha, J. L. Reis, M. K. Peter, & Z. Bogdanović (Eds.), Marketing and Smart Technologies. 9-18. Springer. https://doi.org/10.1007/978-981-15-1564-4_2
Sullivan, Danny (2018, enero 30). A reintroduction to Google’s featured snippets. Blog Google. Consultado 30/03/2023. [Online] Disponible https://blog.google/products/search/reintroduction-googles-featured-snippets/
Trippas, Johanne R.; Spina, Damiano; Thomas, Paul; Sanderson, Mark; Joho, Hideo; Cavedon, Lawrence (2020). Towards a model for spoken conversational search. // Information Processing & Management. 57:2, 102162. https://doi.org/10.1016/j.ipm.2019.102162
Wu, Zhijing; Sanderson, Mark; Cambazoglu, B. Barla; Croft, W. Bruce; Scholer, Falk (2020). Providing Direct Answers in Search Results: A Study of User Behavior. // Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 1635-1644. https://doi.org/10.1145/3340531.3412017
Yu, Liyang (2014). A developer's guide to the semantic web (Second). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43796-4
Zhao, Yiming; Zhang, Jin; Xia, Xue; Le, Taowen (2019). Evaluation of Google question-answering quality. // Library Hi Tech. 37:2, 308–324. https://doi.org/10.1108/LHT-10-2017-0218
Ziakis, Christos; Vlachopoulou, Maro; Kyrkoudis, Theodosios; Karagkiozidou, Makrina (2019). Important factors for improving Google search rank. // Future Internet. 11:2, 32. https://doi.org/10.3390/fi11020032.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Los autores y autoras conservan sus derechos de autor, aunque ceden a la revista de forma no exclusiva los derechos de explotación (reproducción, distribución, comunicación pública y transformación) y garantizan a esta el derecho de primera publicación de su trabajo, el cual estará simultáneamente sujeto a la licencia CC BY-NC-ND. Los autores aceptan la responsabilidad legal de cumplir plenamente con los códigos éticos y leyes apropiadas, y de obtener todos los permisos de derecho de autor debidos. Se permite y se anima a los autores y autoras a difundir electrónicamente la versión editorial (versión publicada por la editorial) en la página web personal del autor y en el repositorio de la institución a la que pertenece.
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© 1996- . Los autores y autoras conservan sus derechos de autor, aunque ceden a la revista de forma no exclusiva los derechos de explotación (reproducción, distribución, comunicación pública y transformación) y garantizan a esta el derecho de primera publicación de su trabajo, el cual estará simultáneamente sujeto a la licencia CC BY-NC-ND. Los autores aceptan la responsabilidad legal de cumplir plenamente con los códigos éticos y leyes apropiadas, y de obtener todos los permisos de derecho de autor debidos. Se permite y se anima a los autores y autoras a difundir electrónicamente la versión editorial (versión publicada por la editorial) en la página web personal del autor y en el repositorio de la institución a la que pertenece.